Monitoring the Quality of Primary Care

Important Concepts in Quality Assessment

Systems View
- Inputs = resources
- Processes = activities
- Outcomes = effects of the activities
Systems View of a Diarrhea Control Program

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>PROCESSES</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trained Health Workers</td>
<td>Education sessions for the mothers</td>
<td>Children treated with Oral Rehydration Therapy</td>
</tr>
<tr>
<td>Oral Rehydration Salts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interrelationship of Subsystems

Training system

- **Inputs**: Health workers, Trainers, Training materials
- **Process**: Training session of the HWs
- **Outcomes**: Competent health workers

Diarrhea control system

- **Inputs**: Competent health workers, Oral rehydration salts (ORT)
- **Process**: Education session of the mothers
- **Outcomes**: Children treated with ORT

Advantages of Using Systems View

- Identify process elements often overlooked
- Make explicit links between resources, activities and effects
- Provide framework for structured analysis of quality issues
- Explore causes of poor performance
More Clinical Practice Guides

- TTT standards
- Reproductive Health Protocols
- Integrated Management of Childhood Illness
- Tuberculosis case management
- Syndromic approach to STD case management

Measuring Compliance With Standards Is Assessing Quality

- Standards can be developed for each quality of care dimension
- Standards can be developed for each component of the system

Dimensions of Quality

- Effectiveness
- Efficiency
- Technical Competence
- Safety
- Accessibility
- Interpersonal Relations
- Continuity
- Amenities
How Data Can Help Improve Quality

- Identify quality issues
- Quantify the quality gap
- Identify root causes of poor quality
- Select the quality improvement strategy
- Monitor change

Striking a Balance Between Measurement and Improvement

- Measurement without improvement
- Improvement without measurement
- Too many data
- No data

Introduction to Monitoring
Monitoring System

The regular collection and analysis of a core set of indicators

Example: Health information system

Effective Monitoring Systems

• People who collect data must use them to make decisions about health problems
• Data is collected repeatedly to monitor trends over time

Objective of Quality Monitoring

…To identify and express in a measurable way the gap between the current level of quality and the expected one…
Quality Monitoring Systems

• Collect data on performance against standards
• Include information on the processes

Incremental Approach to a Monitoring System

• Begin with a limited scope to fit existing resources
• Expand the monitoring system in space, time, scope, and methods
• Maintain the monitoring system

THE ROAD TO QUALITY MONITORING

Decide What Information You Need
Collect the Data
Use the Information You Received
Monitoring the Quality of Primary Care - Core Curriculum

Quality Monitoring Process

Steps
- Select health service(s) to be monitored
- Describe the process of care
- Draw a systems view of the service(s)
- Make explicit critical standards
- Develop performance indicators
- Choose appropriate data collection methods
- Design monitoring tools
- Test the monitoring tools
- Select the monitoring strategy
- Collect data
- Tabulate results
- Analyze information
- Summarize and report results
- Design a data storage and retrieval system
- Distribute information

DECIDE WHAT INFORMATION YOU NEED

Select the Health Services to Monitor
- Describe the Process of Care
- Draw a Systems View
- Make Explicit Critical Standards
- Develop Performance Indicators

DECIDE WHAT INFORMATION YOU NEED

Select the Health Services to Monitor
- Describe the Process of Care
- Draw a Systems View
- Make Explicit Critical Standards
- Develop Performance Indicators

Monitoring the Quality of Primary Care - Core Curriculum
Quality Assurance Project
February 2000
Health Services to Monitor

• Prioritize according to criteria
 – High volume: most common
 – High risk: most serious
 – Problem-prone: most difficult to handle
• Other criteria
• Other situations

Example: Prioritization Matrix

<table>
<thead>
<tr>
<th></th>
<th>Prenatal visits</th>
<th>A.R.I.</th>
<th>Adult Tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Volume</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>High Risk</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Problem-prone</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SCORE</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

ARI case management in children under five is the priority service to monitor
DECIDE WHAT INFORMATION YOU NEED

- Select the Health Services to Monitor
- Describe the Process of Care
- Draw a Systems View
- Make Explicit Critical Standards
- Develop Performance Indicators

Process of Care - Defined

- Listing of activities/tasks to be carried out during the health care interaction
- Only the critical tasks key to a correct diagnosis and treatment to ensure desired outcome

How to Select Critical Activities

- Official policy
- Provider’s judgement
- Expert opinion
Basic Flow Chart Symbols

- Step or activity
- Start/End points in the process
- Direction
- Connector to next page
- Cloudy Step

Additional Symbols for Second-Level Flow Charts

- Decision or branch point
- Wait / Bottleneck

Process Flowchart
Example: Care Process for ARI

1. Child arrives at clinic
2. HW checks for danger signs
3. HW counts respiratory rate
4. HW classifies the infection

- Pneumonia?
 - No
 - Counsels for URI
 - Yes
 - Counsels for pneumonia
 - Administers first dose of antibiotic
 - Instructs mother to bring child back in 2 days

Child departs clinic

DECEIVE WHAT INFORMATION YOU NEED

Select the Health Services to Monitor
- Describe the Process of Care
- Draw a Systems View
- Make Explicit Critical Standards
- Develop Performance Indicators

Example: Systems View of ARI Case Management

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Processes</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Child</td>
<td>• Ask about danger signs</td>
<td>• Pneumonia is recognized</td>
</tr>
<tr>
<td>• Competent Provider</td>
<td>• Count respiration rate</td>
<td>• Appropriate treatment is given</td>
</tr>
<tr>
<td>• Child caretaker</td>
<td>• Classify (pneumonia/URI)</td>
<td>• Child referred as appropriate</td>
</tr>
<tr>
<td>• Timing Device</td>
<td>• Treating</td>
<td>• Caretaker understands home action and return if necessary</td>
</tr>
<tr>
<td>• Antibiotics</td>
<td>• Counseling on treatment</td>
<td>• Decrease in case fatality rate</td>
</tr>
<tr>
<td>• Child record</td>
<td>• Counseling on return</td>
<td>• Child mortality rate decreases</td>
</tr>
<tr>
<td>• Clinical guidelines</td>
<td>• Recording</td>
<td></td>
</tr>
</tbody>
</table>
DECIDE WHAT INFORMATION YOU NEED

- Select the Health Services to Monitor
- Describe the Process of Care
- Draw a Systems View
- Make Explicit Critical Standards
- Develop Performance Indicators

What is a Standard?

- A statement of expected quality
- Who should be doing what, in which way, at which level of the health system, and at what time

Quality Standards

- Standards make explicit the definition of quality desired for a specific service, system => Set a goal
- Standards provide a basis of measurement against which performance can be compared and assessed => Measure achievement of that goal
Implicit vs. Explicit Standard

Implicit
- Not formally written down
- Something "that workers "just know"

Explicit
- Formally written down

Types of Standards

- System - taxonomy of standards
- Clinical vs. management standards

Clinical Standards

<table>
<thead>
<tr>
<th>Input Standards</th>
<th>Process Standards</th>
<th>Outcome Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job descriptions Specifications</td>
<td>Clinical practice guidelines Protocols</td>
<td>Patient health outcomes</td>
</tr>
</tbody>
</table>
Managerial Standards

<table>
<thead>
<tr>
<th>Input Standards</th>
<th>Process Standards</th>
<th>Outcome Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative policies</td>
<td>Standard operating procedures</td>
<td>Expected results*</td>
</tr>
<tr>
<td>Rules and regulations</td>
<td>Qualifications</td>
<td></td>
</tr>
</tbody>
</table>

Examples of Standards

Input Standard

Each clinic must have at least one health provider trained in tuberculosis case management

Examples of Standards (cont’d.)

Process Standard

All patients hospitalized for cerebral malaria must have their temperature checked every four hours
Examples of Standards (cont’d.)

Outcome Standard

The total fertility rate must be < 5

Characteristics of a Good Standard

- Valid
- Reliable
- Clear
- Realistic

Characteristics of a Good Standard

- Valid
 - Based on scientific evidence or other acceptable experience
- Reliable
 - Leads to the same result each time it is applied
Characteristics of a Good Standard (cont’d.)

- Clear
 - Understood in the same way by everyone; not subject to misinterpretation
- Realistic
 - Can be achieved with existing resources

Sources of Standards

- Ministry of Health
- World Health Organization
- Professional organizations
- Teaching institutions
- Research findings

Three Problems of Standards

- Not written down formally
- Not communicated
- Do not meet criteria of a good standard
If Standard Is Not Explicitly Stated

- Find out if it exists implicitly
- If so, make the standards as explicit as possible

If Standard Exists and Is Not Communicated

- Use the standard if it is satisfactory
- Create a process that will communicate the standard
- Note how this may affect results of monitoring

If Standard Exists but Fails to Meet Essential Criteria of Good Standard

- Refer to internationally recognized standard
- Improve existing standard
- Discard any unscientific or harmful standards
Example: ARI
Case Management

Process standard
The health worker counts for at least one minute the respiratory rate of the child by using a watch or a timer when the child is calm

Input standard
There has been no shortage of either Cotrimoxazole or Amoxicillin in the past three months

Outcome standard
The severe pneumonia cases are appropriately referred to a hospital

DECIDE WHAT INFORMATION YOU NEED
Select the Health Services to Monitor
Describe the Process of Care
Draw a Systems View
Make Explicit Critical Standards
Develop Performance Indicators

Indicator
• A measurable variable used to determine the degree of adherence to a standard
• Translates a qualitative statement to a quantitative one to express the quality gap
Input Indicator

Standard
There must be one trained family planning nurse per PHC center

Indicator
Proportion of PHC centers that have a trained family planning nurse

Process Indicator

Standard
Each patient with cerebral malaria must have his or her temperature measured 4 times per 24 hours

Indicator
Number of times the temperature has been measured for a patient with cerebral malaria during a 24-hour period

Outcome Indicator

Standard
The average number of pregnancies per woman of reproductive age must be < 5

Indicator
Average number of pregnancies per woman of reproductive age
Development of Indicators

- Easier to develop when a standard exists
- Various types: counts, averages, ratios
- State numerator and denominator

Ratios

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Numerator</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of PHC centers that have a trained FP nurse</td>
<td>Number of PHC centers with at least one trained FP nurse</td>
<td>Total number of PHC centers monitored</td>
</tr>
</tbody>
</table>

Development of Indicators (cont’d.)

- Identify information to collect (number of FP nurses in each PHC center)
- Identify sources of information
- Make sure the indicator is clear and measures exactly what you want
Which Indicator Is Right?

<table>
<thead>
<tr>
<th>Standard</th>
<th>Indicator 1</th>
<th>Indicator 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each clinic must have at least one HW properly trained in TB case management</td>
<td>Proportion of HWs who have had appropriate training in TB case management</td>
<td>Proportion of clinics that have at least one HW trained in TB case management</td>
</tr>
</tbody>
</table>

Example: Performance Indicators for ARI Case Management

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Numerator</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration of a dose of Antibiotics</td>
<td>Number of children with pneumonia whose caretaker administered a dose of antibiotic at the health facility</td>
<td>Total number of children with pneumonia</td>
</tr>
<tr>
<td>Availability of antibiotics</td>
<td>Number of days of drug stockout in the past three months</td>
<td></td>
</tr>
</tbody>
</table>

COLLECT THE DATA

Choose Data Collection Methods
Design Monitoring Tools
Test the Monitoring Tools
State the Monitoring Strategy
Collect Data
COLLECT THE DATA

Choose Data Collection Methods
- Design Monitoring Tools
- Test the Monitoring Tools
- State the Monitoring Strategy
- Collect Data

Data Collection Methods
- Direct observation
- Exit interview of patient
- Interview of health providers
- Record review
- Inspection of the facility
- Mystery patient

Direct Observation
An observer records the tasks performed by health provider during a real patient/provider encounter

Considered the reference method, but influences performance
Patient Exit Interview

Individual exit interview at the clinic asks what happened during the clinic and how satisfied patient is

Does not disturb patient/provider interaction but limited by patient's understanding, memory, and courtesy bias

Provider Interview

An interviewer asks the health provider open-ended or yes/no questions about the management of health services and patient care

Good to test competence (knowledge) and organization of services, but does not assess performance

Record Review

Review of a sample of medical records

Usually information limited to symptoms, diagnosis, and treatment
Inspection of the facility
Checks for items (drugs, equipment, etc.)

Usually limited to inputs standards

Mystery Patient
A trained person mimics a symptom or comes with a specific demand and observes what the provider does

- Unbiased
- Limited to what can be observed
- Ethical issues

No single method presents all advantages

Combine several methods for higher cost-effectiveness
Example: Data Collection Methods in ARI Case Management

- Direct observation: *Explained the treatment*
- Exit interview with caretaker: *Administered first dose of antibiotic*
- Inspection of the pharmacy: *Stock of antibiotic*
- Review of records: *Severe pneumonia referred*

COLLECT THE DATA

Choose Data Collection Methods

Design Monitoring Tools

Test the Monitoring Tools

State the Monitoring Strategy

Collect Data

Designing Data Collection Forms

- *Variable format:*
 - Close-ended
 - Yes/No checklist
 - Open-ended

- *Sections:*
 - Administrative data
 - Technical data
 - Coding system
 - Comments/Notes
Example: Direct Observation Questionnaire

1. Clinic name: __________
2. Did the health worker count the respiratory rate? Yes [] No []

Comments: ______________

Example: Exit Interview of the Caretaker

1. Clinic name: __________
2. Did you give the first dose of treatment to your child? Yes [] No []

Comments: ______________

Example: Checklist for the Pharmacy Inspection

1. Clinic name: __________
2. Number of days of amoxycilline or cotrimoxazole stockouts in the past three months? ________________ []

Comments: ______________
Example: Checklist for the Record Review

1. Clinic name:_________ Code
2. What is the total number of severe pneumonia cases recorded in the past three months?______
3. What is the total number of severe pneumonia cases referred to hospital in the past three months?_____%
4. Percent of severe cases referred to a hospital (divide item 3 by item 2 and multiply by 100)___% Comments: ______________

Monitoring Tools as Job Aids

- Using forms to decrease inter-observer variability
- Forms allow a rotating focus
- Forms supplement existing information

COLLECT THE DATA

Choose Data Collection Methods
Design Monitoring Tools
Test the Monitoring Tools
State the Monitoring Strategy
Collect Data
Review Forms With Users

- Data collectors must understand forms, know what they are looking for
- Test clarity of the questions
- For observation, ask to demonstrate task they would expect providers to perform

Test the Use of the Forms

- Often called “pre-testing”
- Actual field practice with the instruments
- Report problems, successes
- Modify tools as necessary

COLLECT THE DATA

Choose Data Collection Methods
- Design Monitoring Tools
- Test the Monitoring Tools
- State the Monitoring Strategy
- Collect Data
State the Monitoring Strategy

- Whose performance is to be monitored?
- How do you build on existing information and monitoring systems?
- What is the optimal frequency for data collection?
- Who collects the data?
- Resources needed?
- Validation?
- How many cases to monitor?

Whose performance is to be monitored?

- Individual providers
- Health center
- Region

Purpose influences unit of analysis

How do you build on existing systems?

Quality monitoring should be integrated
- Determine if existing system captures quality information
- If not, adapt tools to include data collection on quality
What is the optimal frequency for data collection?

- Depends on time, resources, provider's needs and complexity of system
- Be flexible

Who collects the data?

- Outsiders (supervisor, manager, other)
- Colleagues of health provider (peer assessment)
- Self-assessment

What resources are needed?

- At least 5%
- No absolute answer
How to validate data?

Two validity issues
- Was the task performed?
 - Accuracy of data reported
- Was the task performed correctly?
 - Double-checking

How many cases to monitor?

- No statistical tests
 - one case is enough for feedback
- Looking for a significant difference
 - calculate sample size
- Overall performance
 - one case is enough for feedback

Example: Monitoring Strategy

- Random sample of 10 nurses drawn from 15 rural health centers and 2 medical assistants of the OPD of the hospital
- Unit of analysis is the individual health care provider
- Monitoring through supervision visits
- All ARI cases to be included
COLLECT THE DATA

Choose Data Collection Methods
Design Monitoring Tools
Test the Monitoring Tools
State the Monitoring Strategy
Collect Data

Collection Day Checklist
- Decide whether to inform in advance of the visit
- Logistic of transportation
- Enough supplies
- Distribute roles and responsibilities
- Agenda of the visit

Collection Day Checklist (cont’d.)
- Team leader’s supporting role
- Respectful attitude
- No judgement in front of patients
- Visit local authorities
- Thank the staff for cooperation

Monitoring the Quality of Primary Care - Core Curriculum
Quality Assurance Project
February 2000
USE THE INFORMATION YOU OBTAINED

- Tabulate Results
- Analyze Information
- Interpret and Use Results
- Design Data Storage & Retrieval System
- Disseminate Information

Disaggregated/Aggregated

- Disaggregated - a score for each task performed by one or several providers
- Aggregated - a global score for all tasks per one or several providers
Disaggregated Data

- Health provider checks the child's temperature in 50% of the cases
- 20% of the health providers systematically check the child's temperature

Aggregated Data

Calculate an index for overall performance that includes multiple individual tasks

<table>
<thead>
<tr>
<th>Questions/tasks</th>
<th>Results</th>
<th>Weight</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did the provider:</td>
<td>Number of times answer is "yes" in 20 observations</td>
<td>On a scale of 1 to 5</td>
<td>Results x weight</td>
</tr>
<tr>
<td>- greet the client in a respectful manner?</td>
<td>12</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>- ask the client about the contraceptive method currently used?</td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>- present the choice of contraceptive methods to the client?</td>
<td>15</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>- use visual aids?</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>- check the understanding of the client on the HIV/AIDS transmission?</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>- assist the client in selecting a method?</td>
<td>13</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>TOTAL SCORE:</td>
<td>55</td>
<td></td>
<td>134</td>
</tr>
</tbody>
</table>
A Global Quality Score

- An index summarizes performance and allows easy trend analysis...

- ...But it hides details provided by disaggregated data

Example: Tabulating Results for ARI Case Management

- The nurses explained the correct treatment for pneumonia to 78% of the caretakers, compared to 45% by the medical assistants
- Nurses referred 74% of the severe pneumonia cases to the hospital, whereas medical assistants did so 98% of the time

USE THE INFORMATION YOU OBTAINED

Tabulate Results
Analyze Information
Interpret and Use Results
Design Data Storage & Retrieval System
Disseminate Information
Performance Analysis

- What is the level of performance?
- Who are the best and worst performers?
- Is there a consistent pattern of performance?
- What is the trend in performance over time?

State the Level of Performance

The performance of health providers in the district is unsatisfactory: only 25% prescribe the correct first line treatment for a malaria episode in adults.

Identify Best and Worst Performers

Various ways

- Pre-identification of thresholds
- Distribution of data, standard deviation
- Divide into three tiers
Look for Patterns of Performance

Widespread deficiencies may have a common cause

Ex: 98% of hospitals do not perform sputum exam for cough longer than two weeks

Observe Trend Over Time

• Performance varies naturally
• Definitive judgement requires multiple measurements

Example: Analyzing ARI Case Management

• Follow-up of the child
 Nurses informed caretakers less often to bring the child back than medical assistants. There was a consistent pattern among nurses, and they could not find an explanation other than “it slipped their mind.”
USE THE INFORMATION YOU OBTAINED

- Tabulate Results
- Analyze Information
- Interpret and Use Results
- Design Data Storage & Retrieval System
- Disseminate Information

Root Causes of Poor Performance

Multiple causes to quality gaps:
- Lack of knowledge and skills
- Low self-motivation
- Inadequate resources
- Peer pressure
- Etc.

Improving Performance Gaps

Multiple targeted interventions:
- Feedback on performance
- Competency-based training
- Additional resources
- Job aids
- Incentives, etc.
Example: Interpret and Use ARI Results

- Explore further the root causes of issues related to the drug supply and referral systems
- Develop job aids for danger signs
- Provide on-the-job training to staff for counting the respiratory rate
- Organize continuing training of the staff in ARI case management at the hospital

Key Questions

- Computerized database or not
- User-friendly and utilization-oriented forms
- Easy retrieval/accessibility
- Data presentation logic

USE THE INFORMATION YOU OBTAINED

- Tabulate Results
- Analyze Information
- Interpret and Use Results
- Design Data Storage & Retrieval System
- Disseminate Information
Example: Data Storage and Retrieval System

- Storage room for manual filing system
- One folder per health facility
- One sub folder per topic
- One performance summary sheet per health provider

USE THE INFORMATION YOU OBTAINED

- Tabulate Results
- Analyze Information
- Interpret and Use Results
- Design Data Storage & Retrieval System
- Disseminate Information

Dissemination Strategies

- Internal Audience
 - Immediate feedback to staff
 - Group feedback
- External audience
 - Workshop/conference
 - Bulletins
Example:
Disseminate ARI Information

• On-site feedback: supervisors discussed results with health care providers
• Group feedback: present performance results at the district quarterly review meeting
• Newsletter “Quality Focus” distributed to 200 people

Selected Issues and Choices to Make

• Sampling or not?
• Validity of the measurement?
• Thresholds?
• Issues with standards
• Variation in performance
• Link performance to rewards