Content

Module 1: Defining Quality Slides 2 - 15
Module 2: Cost and Quality Slides 16 - 26
Module 3: Relationship between Cost and Quality Slides 27 - 32
Module 4: Analysis of Cost and Quality Slides 33 - 55

Dimensions of Quality

- Technical performance
- Access to services
- Effectiveness of standards
- Interpersonal relations
- Efficiency of service delivery
- Continuity of services
- Safety
- Physical infrastructure and comfort
- Choice of services

Definition of quality

"The quality of technical care consists in the application of medical science and technology in a way that maximizes its benefits to health without correspondingly increasing its risks. The degree of quality is, therefore, the extent to which the care provided is expected to achieve the most favorable balance of risks and benefits."

- Avedis Donabedian M.D., 1980
Slide 4

Definition of quality

"Doing the right thing, right, the first time. Doing it better the next time."

- ODI Consulting

Slide 5

Definition of quality

"Quality is conformance to requirements or specifications."

- Phil Crosby 1979

Slide 6

Definition of quality

"Proper performance (according to standards) of interventions that are known to be safe, that are affordable to the society in question, and have the ability to produce an impact on mortality, morbidity, disability, and malnutrition."

- M.I. Roemer and C. Montoya Aguilar, WHO, 1988
Slide 7

Definition of quality

“Quality is compliance with standards.”

- QA Project Contract, 1997

Slide 8

Perspectives on quality

- Client / Family
- Provider
- Health Care Administration & Management
- Community

Slide 9

Systems view of quality

- Input: Right workers for the right job, Availability of drugs, Necessary equipment and supplies
- Process: Compliance to standards of care
- Outcome: Correctly treated patient, Satisfied clients, Increased utilization, Healthy patients, Reduced disability, Death

Slide 10

QA triangle

QD Defining Quality

Quality Assurance

QI Improving Quality

QM Measuring Quality

Slide 11

Institutionalization model

Institutionalization of Quality Assurance

Policy

Support Factors

Leadership

Core Values

Resources

Slide 12

Definition of quality assurance

“Quality Assurance is that set of activities that are carried out to set standards and to monitor and improve performance so that the care provided is as effective and as safe as possible.”

• The Quality Assurance Project, 1993

Slide 13

Four principles of QA

- Customer focus
- Team work
- System thinking
- Data use

Slide 14

Quality assurance

Slide 15

Systems view of QA
Slide 16

What is cost?

- Something expended to obtain a benefit (expense, disbursement)
- The quantity of one thing that is exchanged for a service or a product (price, charge)
- A loss incurred in the course of gaining something (toll, sacrifice, loss)

Slide 17

What is cost?

<table>
<thead>
<tr>
<th>Cost Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary or financial</td>
<td>Actual expenses incurred for an input or to provide a product or service, at a given time</td>
</tr>
<tr>
<td>Economic or opportunity</td>
<td>The value of benefits foregone by using resources to provide alternate products or services</td>
</tr>
<tr>
<td>Accounting</td>
<td>Artificial costs applied to reflect the real value of a product or service at a given time; cost is not actually incurred</td>
</tr>
<tr>
<td>Shadow prices, for non-monetary</td>
<td>Costs applied to subsidize goods and services whose true value is not the same as listed</td>
</tr>
</tbody>
</table>

Slide 18

Major cost categories

- PEOPLE
- MACHINE
- MATERIAL
Slide 19

Cost dimensions

- Direct vs. Indirect Cost
- Obvious vs. Hidden cost
- (Investment or Capital or Fixed) Cost vs. (Recurrent or Variable) Cost
- Unit cost
- Average Cost
- Incremental Cost

Note: Some costs are “unknown and unknowable” (Deming)

Slide 20

Cost of quality

- Costs incurred in achieving/maintaining quality standards, and
- Those costs resulting from not achieving/maintaining quality standards

Source: Juran, Shewhart

Slide 21

Cost of quality

- Prevention
- Appraisal
- Failure

Not included: Cost of “doing business” or providing services

Cost incurred when services are identified as defective before they are given to client

Cost incurred when services are identified as defective after they reach the client
Example - use of drugs

PREVENTION COST
- Drug use protocol

APPRAISAL COST
- Inspection of drug stock

FAILURE
- **Internal**
 - Use of nonessential list drugs
- **External**
 - Adverse drug reaction

Assumptions

Improved Quality Requires Additional Resources, But ...
- Increased efficiency or reduced re-work may save resources
- Standards may decrease variation and save costs
- Additional inputs or complex technology will require additional resources
- Increased resources do not guarantee improved quality

Assumptions (cont'd)

Costs Of Poor Quality Are Easily Seen And Fixed, But ...
- Most costs of poor quality are hidden
- The causes of poor quality are often complex, systems-related issues
- Costs of correcting problems are diminished when actions are taken as close to the problem as possible
Slide 25

Quality in cost terms

Poor Quality:
Care "that falls short of customer expectations... Time or money spent on something that doesn't help the (client)... Cost of not doing things right the first time and having to do them over" (Webster)

"Costs associated with (poor) quality are those costs that would not be expended if quality was perfect" (Waress)

Slide 26

Cost of poor quality

Slide 27

Theory of quality economics

Source: Ishikawa (1988)
Slide 28

Effect of a change in cost on quality

<table>
<thead>
<tr>
<th>Cost↑</th>
<th>Quality↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Necessary resource is added</td>
<td></td>
</tr>
<tr>
<td>Cost↓</td>
<td>Quality↓</td>
</tr>
<tr>
<td>• Harmful or redundant resource is added</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost↑</th>
<th>Quality↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Harmful or redundant resource is removed</td>
<td></td>
</tr>
<tr>
<td>Cost↓</td>
<td>Quality↑</td>
</tr>
<tr>
<td>• Necessary or redundant resource is removed</td>
<td></td>
</tr>
</tbody>
</table>

Slide 29

Taguchi’s laws

- We can improve quality without increasing cost
- We can reduce cost by improving quality
- We cannot reduce cost without reducing quality

Slide 30

Taguchi’s loss function

$L = k(y - T)^2$

$L = $ Loss in dollars
$k = $ Cost coefficient
$T = $ Specified target value
$y = $ Value of the measured characteristic

Source: Ealy (1988)
Slide 31

Simple example

Cost examples
- More patient fuel cost, unproductive time, repair and rework, cost of care, pollution
- Patient fuel cost, loss of productive time, inconvenience, repair cost, rework
- Patient fuel cost, cost of care

* due to equipment breakdown

Slide 32

Flowchart of cost recovery

Increased
Willingness to Pay
Reputation for Quality
Patient Satisfaction
Provider Satisfaction
Quality Assurance & Reputation for Quality
Cost Effective Standards
Loyalty to Health Facility
Increased Revenues

QUALITY

Increased Net Revenues

Effective Implementation - Do it Right the First Time

Lower Costs

Efficient Implementation: Do it Right the First Time

Increased Revenues

Slide 33

Cost analysis guidelines

1. Define Objective of Cost Analysis
2. Decide on Level of Analysis

Illustrated
Cost analysis guidelines (cont'd)

- Decide on level of analysis (for cost and quality):
 - clinic, hospital, regional, national (health systems and sub-systems)
 - intervention (e.g., for improving quality), QA tool, approach, program
 - by cost category, activity, process, department, organization or and/or program
- Measure what is relevant to decision to be made or objective of analysis
- Decide on level of precision required
- Set time period of analysis (e.g., prospective or retrospective)

Spectrum of methodologies for analyzing cost and quality

Evaluate cost relative to benefit
- Cost-effectiveness analysis
- Cost-Benefit Analysis
- Return on Investment
- Cost-utility analysis

Evaluate cost and cost of poor quality
- e.g., Cost management
- Activity-based cost management
- Cost of Quality analysis
- Analysis of inefficiency

Definitions

Effect
- Change among individuals, families or communities as a result of an activity, project or program

Benefit
- Advantages in dollar terms resulting from various actions

Utility
- (Perception of) satisfaction from consuming a specific bundle of goods and services (subjective)
Slide 37

Why cost-effectiveness (C-E)?

- Useful for comparing alternatives
 - alternative interventions to achieve the same goal
 - alternative means for intervention to achieve its objectives
 - trade-offs in varying size, scope or composition of a given strategy
- Identify optimum alternative

Slide 38

Cost-effectiveness analysis (CEA)

<table>
<thead>
<tr>
<th>Intervention A</th>
<th>Intervention B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost C_A</td>
<td>Cost C_B</td>
</tr>
<tr>
<td>Effectiveness E_A vs. E_B</td>
<td></td>
</tr>
</tbody>
</table>

Other possible analysis:
- Difference in C vs. Difference in E

Slide 39

General measurement guidelines

COST
- Concentrate on costs that are relevant to the decision (i.e., those that depend on the choice made)
- Focus on costs that will vary with each alternative

EFFECT
- Decide which outcome criteria to use (output, effect, impact)
- Develop measures for criteria that can be quantified, feasibly measured, and will change depending on the alternative selected
Some limitations

1. Conceptual limitations
 - when alternatives are not exactly comparable
 - when multiple effects exist for an alternative
 - deciding which costs and effects to measure

2. Interpretational limitations
 - not the only component for making decision
 - risk of overgeneralizing results

3. Measurement limitations

4. Data limitations

5. Calculation limitations

CBA and ROI

- Cost-Benefit Analysis:
 comparison of cost of resources and health benefits in terms of a common unit of measurement, usually monetary

- Return on Investment:
 the amount of cost benefits (savings) achieved by an intervention over the incremental cost of that intervention

Cost-utility analysis

- Used when effectiveness cannot be measured
- Compares cost of alternatives with subjectively derived ratings of those alternatives

Example of utility measures:
- DALYs - Disability Adjusted Life Years
- YLL - Years of Healthy Life Lost
- QALYs - Quality Adjusted Life Years
Slide 43

Cost-utility from sample of interventions

Slide 44

Evaluation of CUA

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables comparison of interventions across different sectors</td>
<td>Results depend on assumptions made in calculation</td>
</tr>
<tr>
<td>Useful for guiding policy decision</td>
<td>Raises ethical questions about value of life</td>
</tr>
<tr>
<td></td>
<td>May not lead to equitable decisions</td>
</tr>
</tbody>
</table>

Sample calculation

\[YHLL = \frac{I \times (CFR \times E(Af)) + (CDR \times D\% \times Dt)}{1000} \]

- **I**: Incidence rate per 1000 population per year
- **CFR**: Case Fatality Ratio (proportion of those developing the disease who die from the disease)
- **Af**: Expected average age of death
- **E(Af)**: Expectation of life for age of death
- **CDR**: Case Disability Ratio \((1 - CFR)\)
- **D\%**: Extent of disability
- **Dt**: Duration of Disability
Slide 46

Use of DALYS for burden of disease

![Graph showing DALYS for burden of disease across different regions.](image)

Source: World Bank (1993)

Slide 47

Activity-based cost management

- Method for allocating resources to services/products using activities performed to produce services/products
- More accurate product costing and insight into the production process itself.
- ABC and Activity-Based Management (ABM) map out these cause-and-effect relationships in production of services/products

Slide 48

Example

- Company XYZ makes two products: blue cars and red cars
- 900 blue cars produced per year, 100 red cars
- Red cars are more specialized and consume 60% of personnel time

Traditional Accounting

Assign 90% of overhead/support costs to blue cars

ABC Accounting

Assign 40% of overhead/support cost to blue cars
Slide 49

Traditional vs. ABC accounting

<table>
<thead>
<tr>
<th>Traditional Accounting</th>
<th>ABC Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>Costs</td>
</tr>
<tr>
<td>Products/Services</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Products/Services</td>
</tr>
</tbody>
</table>

Slide 50

ABC supports process view

<table>
<thead>
<tr>
<th>Inputs (Departments)</th>
<th>Inputs (Departments)</th>
<th>Business Process</th>
<th>ACTIVITIES</th>
<th>ACTIVITIES</th>
<th>Products & Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slide 51

ABC and QA

- Value-added vs. non-value added activities
- Primary vs. secondary activities
Slide 52

Cost and quality report

<table>
<thead>
<tr>
<th>Company XYZ</th>
<th>Illustrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Appraisal</td>
<td>20%</td>
</tr>
<tr>
<td>Cost of Prevention</td>
<td>20%</td>
</tr>
<tr>
<td>Cost of Failure</td>
<td>60%</td>
</tr>
<tr>
<td>Total Cost of Quality</td>
<td>100%</td>
</tr>
</tbody>
</table>

Slide 53

Analysis of inefficiency

Definition of efficiency
- The achievement of objectives without wasting resources
- The relationship between output and input

For example:
- Two programs, A & B, use the same amount of resources
- Program A screens 10 mothers/day
- Program B screens 5 mothers/day
- Program A is more efficient than Program B

Source: Reynolds and Gaspari

Slide 54

Sources of inefficiency - examples

- **High variation** in the processes for delivering a product/service
 - may itself be due to lack of standards or procedures, or lack of knowledge of these and therefore non-compliance with standards and procedures, among other things
- **Using unnecessarily high cost inputs**, e.g., expensive equipment
- **Poor productivity**
 - may be due to a myriad of issues, not excluding poor processes, or poor match between skill and performance expectation
- **Non-value added activities**, e.g., repetition
General guideline for selecting methodologies

Evaluate the impact of a change on cost and quality

Compare alternatives

Use activities to identify areas for improving efficiency/quality

Look at systems

Quality and cost, quality before only

Suggested Methodology

Cost-benefit analysis
Cost-effectiveness analysis
Activity-based costing

Cost of Quality - related to costs only
Cost Management
Facility-based costing

Cost-utility analysis
Cost-benefit analysis
Cost-effectiveness analysis

Analysis of inefficiency

- same effect, not monetarily quantified
- different effect, not monetarily quantified
- effect monetarily quantified

Take more opportunistic approach